
Self-Adaptive Frequency Scaling Architecture for
Intrusion Detection System

Qiuwen Lu1,2,4, Zhou Zhou⋆,2,4, Hongzhou Sha2,3,4, Qingyun Liu2,4, and Hongcheng
Sun1

1 Beijing University of Chemical Technology, Beijing, China
luqiuwen@nelmail.iie.ac.cn,sunhc@mail.buct.edu.cn

2 Institute of Information Engineering, Chinese Academy of Science, Beijing, China
{zhouzhou,liuqingyun}@iie.ac.cn

3 Beijing University of Posts and Telecommunications, Beijing, China
shahongzhou@nelmail.iie.ac.cn

4 National Engineering Laboratory for Information Security Technologies
Beijing, China

Abstract. Recently, Intrusion Detection Systems (IDS) have been deployed in
the Internet for information security. Nevertheless, with the growing of Internet
traffic, IDS becomes increasingly complicated and consumes much more energy.
Existing studies concentrate on saving energy, but do not adapt to the change of
network traffic. In this article, we propose a new method to adjust the frequency
of IDS’s devices’ main processors automatically based on the prediction of the
network traffic. It calculates optimal frequency scaling operation sequence via an
internal sandbox model, so as to achieve energy saving purposes. Experiments
show that our method can save 60% power consumption generally.

Keywords: Green IDS, Sandbox Model, Dynamic Frequency Scaling

1 Introduction

As the Internet traffic is growing up rapidly over time, the number of intrusion detection
systems (IDS) devices in a trustworthy service is increasing [1]. Massive equipment run
at their full rate all the time which consume large amounts of electrical energy. It causes
huge waste of energy and brings the opportunity for the energy reduction since current
link utilization is 30% in average and below 45% in peak [2]. This causes a huge waste
of energy and bring the opportunity for reducing the energy consumption.

A lot of power management approaches have been proposed for substantial conser-
vation in energy consumption, and can be classified into two categories: smart standby
and dynamic power scaling. Smart standby methods maximize energy conservation by
letting them fall asleep during the gaps of packets. However, these approaches may
block the service called “network presence” that need to maintain network connectiv-
ity [3]. Dynamic power scaling approaches adapt the capacities of devices dynamically
according to the actual or predicted traffic [4]. Some algorithms of them [5] switch fre-
quency using fixed parameters given by users, which cannot adapt to the variational
⋆ Corresponding author



network traffic. Therefore, it is too complex for users to use these power scaling algo-
rithms in practice.

To address this issue, we propose a Self-Adaptive Dynamic Frequency Scaling Ar-
chitecture (SAFS) to reduce energy consumption. It predicts future network traffic
based on historical data, and all the possible operation sequences which can be applied
to the main processors are enumerated and sent to sandbox model with the predicted re-
sult. Then, the best operation sequence which be evaluated by an objective function will
be applied. In this way, our approach is (1) self-adaptive to the network traffic (2) can
keep a good trade-off between network performance and energy saving. Experiments
indicates that our method can save around 60% power consumption. We make the fol-
lowing contributions in this paper.

– First, we introduce a simplified sandbox model which simulates the procedure of
packet receiving and processing in network devices.

– Secoud, we propose a novel scheme to tune the frequency of the main processor
automatically based on the sandbox model.

2 Related Work

Many researchers concentrate on the method of reducing the energy consumption of
network devices. These methods can be classified as two groups, as smart standby and
dynamic power scaling.

Smart standby lets the complements of devices fall into sleep to reduce the energy
consumption. M. Gupta and S. Singh [6] proposed a method by putting idle ports to
sleep to save energy, but the method could only be effective when the device utilization
rate is under 10% according to [7]. G. Ananthanarayanan et al. [8] proposed a novel
architecture for buffering ingress packets using shadow ports in low-power state.

Dynamic power scaling tune the frequency of the complements in devices dynami-
cally to achieve the same goal. C. Gunaratne et al. [5] firstly raised the approach to tune
the link rate of ethernet port. W. Meng et al. [9] proposed an approach by tuning the
frequency of main processors. This method aimed to reduce the energy consumption by
decreasing the ability of processors, which has been implemented on NetFPGA.

3 Self-Adaptive Frequency Scaling

In this section, we propose our approach in detail. The overview of our method are
illustrated in Section 3.1 and the complements are proposed in Section 3.2–3.5.

3.1 Overview

Our method is based on the idea of local optimization to adapt to the variation of net-
work traffic. Different from dual-threshold method which set the fixed parameters on
the buffer, our approach introduces a sandbox model to predict the behaviour of the
system based on the predicted network traffic, then an optimized operation sequence
applied in future will be concluded. As the traffic changing, the operation sequence can



Main Processor

Memory PM

NIC

Real System

Network

Traffic

TP OP

Operation

Sequence

SAFS

SM
Traffic

Statistics

OE

Log

TP: Traffic Predictor

OP: Operation Optimizer

SM: Sandbox Model

OE: Operation Seq. Enumerater

PM: Power Management

Dataplane

Controlplane

Fig. 1. The Architecture of the SAFS

be recalculated to adapt to the future traffic. Therefore, our method can adapt to the
traffic automatically.

Fig.1 illustrates the architecture of SAFS which can be which can be divided into 5
parts: real system, traffic predictor, operation sequence enumerator, sandbox model and
operation optimizer. The whole system works as follows:

– As the network traffic being processed by real system, the statistical information of
network traffic can be sent to the traffic predictor, and the traffic predictor predicts
the trend of future network traffic;

– The operation sequence enumerator enumerates all the possible operation sequence
and sends the result to the sandbox model with the predicted traffic trend. Then the
sandbox model evaluates these sequences parallelly.

– The operation optimizer chooses the best sequence according to their performance
and apply it in the real system.

3.2 Traffic Predictor

To calculate the operation sequence, we need to know the trend of the future traffic.
Currently, ARMA (Autoregressive Moving Average) and FARIMA (Fractional Autore-
gressive Integrated Moving Average) [10] time series are the main model used to fit and
predict the network traffic, which is well known and have good performance. Therefore,
our work will force on other parts of the architecture.

The output of the traffic predictor Nt is a sequence in time,

Nt : {Nt∗ ,Nt∗+∆s,Nt∗+2∆s, . . . ,Nt∗+(m−1)∆s} (1)

where ∆s is the sample interval and have the length of m. t∗ is start time of the sequence.

3.3 Operation Sequence Enumerator

The operation sequence enumerator gets all the possible frequency Fallow = { f1, f2, . . . , fn}
that the main processor can be set, and enumerates the operation sequence in time of



t1, t2, . . . , tm,

F1 = f1, f1, f1, . . . , f1

F2 = f2, f1, f1, . . . , f1

...
Fn = fn, f1, f1, . . . , f1

Fn+1 = f1, f2, f1, . . . , f1

...
Fm×n = fn, fn, fn, . . . , fn︸ ︷︷ ︸

m

and we define an function Fn(i) as the ith item of sequence Fn.

3.4 Sandbox Model

The sandbox model is used to evaluate the behaviour of the main processor in the real
system with the particular network traffic and frequency sequence by simulation. The
simulator in the sandbox model simulates the Producer-Consumer(P-C) system which
exists widely in network devices. Packets came from the network are received and push
it into a FIFO queue, then the worker pop the packets from FIFO queue and process the
packets.

Status Observer

Simulator (Producer-Consumer System)

Traffic

Divider

Simulator

Clock

Frequency

Tuner

Predicted

Traffic

Frequency

Sequence

Status

Fig. 2. The structure of sandbox model

The implementation of the sandbox model can be described as follows:

1. Get the simulator time t and ∆ t. Get the operation sequence F and the traffic se-
quence like Eq.(1).

2. Let t∗ = t, get the traffic for the correct simulator time using traffic divider which
divide the traffic Nt∗ by 1/∆ t.

3. Get the ith item of the sequence in F as F(i), and the frequency tuner set the pro-
cessing capacity as F(i).

4. Send N̂(t) into the packet generator. The packet generator generates the packets
with length of L(1),L(2), . . . ,L(n) until ∑n

i=1 L(i) = N̂(t).
5. The packets generated from packet generator is pushed into the FIFO buffer. and

pop the W (t) packets from FIFO buffer.



6. Let the simulator clock t equals t +∆ t, and goto the step 3. When the t can be
divided with no remainder by ∆s, goto the step 2.

The system status observer can get the status of the system at each t. These status
can be used to evaluate the performance of operation sequence, which will proposed in
Section 3.5.

3.5 Operation Optimizer

Operation Optimizer selects the best operation sequence from the result of sandbox
model and apply the sequence in the real system. The performance grade the sandbox
model gives are listed below.

– Energy Saving(E): We use the frequency to evaluate the energy saving instead of
actual power, according to the linear relationship between energy consumption and
the frequency. Thus, the energy consumption of devices could be modeled as

E = f1T1 + f2T2 + f3T3 + · · ·+ fnTn (2)

where E is the energy consumption, f1, f2, f3, . . . , fn represents the frequency the
processor can be tuned, and T1,T2,T3, . . . ,Tn denote the time spent in each fre-
quency.

– Switch Times(S): The switch of frequency in processor does not come without cost.
The transition between frequencies brings the extra performance lost. So we treat
the switch times as one of the objectives to evaluate the scaling method.

– Packet Loss(Plost ): The count of packet loss in our devices is an important grade to
evaluate reliability. The packet loss would be unexpected.

We use an objective function to combine all the performance metrics as

f (E,S,Plost ,Ql) =

{
αE +βPlost +θS, Ql < kQmax

α ′E +β ′Plost +θ ′S+ξ ′Ql , Ql ⩾ kQmax
(3)

with α +β +θ = 1,α ′+β ′+θ ′+ ξ ′ = 1, where Ql is the length of the FIFO queue,
and Qmax is the max length of the queue. α,β ,θ ,α ′,β ′,θ ′,ξ ′ and k are the parameters
of the objective function given by users.

Operation Optimizer gets all the sequence F1,F2,F3, . . . ,Fn and calculates the per-
formance grade as Eq.(3). The best operation sequence F |min f (·) will be used in real
system.

4 Experiment

4.1 Data Collection and Performance Metrics

We captured two cases of traffic spanning over a period of time of a total day. One of
them is from the Internet link of a research institute and another is from the gateway of
an office. The characters of traffic cases are listed in Table 1.

There are three performance metrics for the devices that we studies which has been
proposed in Section 3.5.



Table 1. Character of Traffic Cases

Name Traffic Type Sources
Bandwidth

(Mbps)
Avg. Bit

Rate(Mbps)
Avg. Pkt
Length(B)

Case I Core router Institute 10,000 2,770.60 843
Case II Home router Office 100 6.68 913

4.2 Experiment Setup

Our simulated experiments are finished on a PC. According to our datasets, we start the
simulate at time in minutes of t = 0 and end up with t = 1250, which obtain the daily
dynamic traffic pattern. The simulation clock step ∆ t are set as 0.1min to reduce the
cost of computing for the limited resource.

Table 2. The parameters of the simulator used in experiments

Simulator
CPU Frequency

(pkts/∆ t)
Queue Length

(pkts)
Physical Interpretation

A 32,128 1,024 Simple CPU with small memory
B 32,128 2,048 Simple CPU with medium memory
C 32,128 4,096 Simple CPU with large memory
D 32,128 8,184 Simple CPU with huge memory
E 32,64,96,128 1,024 Complex CPU with small memory
F 32,64,96,128 2,048 Complex CPU with medium memory
G 32,64,96,128 4,096 Complex CPU with large memory
H 32,64,96,128 8,184 Complex CPU with huge memory

Table 2 lists the sets of parameters of the simulator, which represents the devices
with different memory and CPUs to test the performance of the methods. The up-
threshold of dual-threshold (DT) scaling method is set as Eq.(4) and the down-threshold
is set as Eq.(5).

0,
Ql

n
+∆L,2

Ql

n
+∆L, . . . ,(n−1)

Ql

n
+∆L,Ql (4)

0,
Ql

n
−∆L,2

Ql

n
−∆L, . . . ,(n−1)

Ql

n
−∆L,Ql (5)

where Ql ,n are the length of the queue and the count of CPU frequencies for each
simulator. In the following experiments, the ∆L is set as 10, and the parameters of
Eq.(3) are set as α = 0.4,β = 0.2,θ = 0.4, α ′ = 0.1,β ′ = 0.3,θ ′ = 0.2,ξ ′ = 0.4 and
k = 0.8 based on their importance of metrics.

4.3 Result

Fig.3 compares the performance of quad-threshold method (DT)[5] with SAFS in the
Traffic Case I (Institute), which illustrates that SAFS has better performance with near
60% energy saving comparing with peak in the huge memory simulator. Fig.3(a) shows
the energy consumption of each method in each simulator, note that SAFS has good
effect in Simulator C, D, F, G, H which have large memory and complex CPUs. Fig.3(b)



A B C D E F G H
20

25

30

35

40

Simulator

E
ne

rg
y 

C
on

su
m

pt
io

n(
%

 o
f p

ea
k)

 

 
DT
SAFS

(a) Energy Consumption

A B C D E F G H
0

50

100

150

200

Simulator

S
w

itc
h 

T
im

es

 

 
DT
SAFS

(b) Switching Times

Fig. 3. The performance of SAFS and DT[5] in Traffic Case I(Institute)

A B C D E F G H
24.5

25

25.5

26

26.5

Simulator

E
ne

rg
y 

C
on

su
m

pt
io

n(
%

 o
f p

ea
k)

 

 
DT
SAFS

(a) Energy Consumption

A B C D E F G H
0

10

20

30

40

Simulator

S
w

itc
h 

T
im

es

 

 
DT
SAFS

(b) Switching Times

Fig. 4. The performance of SAFS and DT[5] in Traffic Case II (Office)

shows the times of frequency switch, which SAFS have better performance in Simulator
D and H than DT. When it comes to the packet loss, our method lost on average of 633
packets at Simulator A, B, E, H, and both our method and dual-threshold method lose
no packets in Simulator C, D, F, G, H.

Fig.4 shows the performance of SAFS in Traffic Case II (Office). SAFS has better
performance on the energy consumption and switch times in Simulator A, B, C and
E. In all the simulator, both SAFS and DT have no packet loss. SAFS and DT have
the same performance in Simulator C, D, G, H because the traffic of Traffic Case II
is too small for them which represents the machine with huge memory and have good
computing power.



5 Conclusion

This paper is to design power scaling mechanism named by SAFS for energy efficient
IDS devices, by adjusting frequency of the main processor in devices dynamically. Spe-
cially, SAFS employs a sandbox model firstly to evaluate the performance of the oper-
ation sequences that may be applied in real system, thus select the best one and finally
use it in the next time period. Experiments indicate that SAFS effectively decreases the
energy consumption of the main processor and the switching times. Consequently, our
approach, SAFS, is much more effective for energy conservation in IDS devices.

Acknowledgments. This work was supported by The National Science and Technol-
ogy Support Program (Grant No. 2012BAH46B02); The Strategic Priority Research
Program of the Chinese Academy of Sciences under (Grant No. XDA06030200); The
National Natural Science Foundation (Grant No. 61402474).

References

1. Di, P.R., Mancini, L.V.: Intrusion detection systems. Volume 38. Springer (2008)
2. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness

in network design and routing. In: INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE. (2008)

3. Bolla, R., Davoli, F., Bruschi, R., Christensen, K., Cucchietti, F., Singh, S.: The potential
impact of green technologies in next-generation wireline networks: Is there room for energy
saving optimization? IEEE Communications Magazine 49(8) (2011) 80-86

4. Song, T., Shi, X., Ma, X.: Fine-grained power scaling algorithms for energy efficient routers.
In: Proceedings of the tenth ACM/IEEE symposium on Architectures for networking and
communications systems, ACM (2014) 197-206

5. Gunaratne, C., Christensen, K., Nordman, B., Suen, S.: Reducing the energy consumption
of ethernet with adaptive link rate (alr). Computers, IEEE Transactions on 57(4) (2008)
448-461

6. Gupta, M., Singh, S.: Greening of the internet. In: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer communications,
ACM (2003) 19-26

7. Reviriego, P., Christensen, K., Rabanillo, J., Maestro, J.A.: An initial evaluation of energy
efficient ethernet. Communications Letters, IEEE 15(5) (2011) 578-580 Communications
Letters, IEEE.

8. Ananthanarayanan, G., Katz, R.H.: Greening the switch. In: Proceedings of the 2008 con-
ference on Power aware computing and systems, USENIX Association (2008) 7-7

9. Wei, M., Yi, W., Chengchen, H., Keqiang, H., Jun, L., Bin, L.: Greening the internet using
multi-frequency scaling scheme. In: Advanced Information Networking and Applications
(AINA), 2012 IEEE 26th International Conference on, IEEE (2012) 928-935

10. Yantai, S., Zhigang, J., Lianfang, Z., Lei, W., Yang, O.W.W.: Traffic prediction using farima
models. In: Communications, 1999. ICC ’99. 1999 IEEE International Conference on. Vol-
ume 2. (1999) 891-895 vol.2


